首页> 外文OA文献 >Robust Recovery of Subspace Structures by Low-Rank Representation
【2h】

Robust Recovery of Subspace Structures by Low-Rank Representation

机译:低秩表示法对子空间结构的鲁棒恢复

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this work we address the subspace recovery problem. Given a set of datasamples (vectors) approximately drawn from a union of multiple subspaces, ourgoal is to segment the samples into their respective subspaces and correct thepossible errors as well. To this end, we propose a novel method termed Low-RankRepresentation (LRR), which seeks the lowest-rank representation among all thecandidates that can represent the data samples as linear combinations of thebases in a given dictionary. It is shown that LRR well solves the subspacerecovery problem: when the data is clean, we prove that LRR exactly capturesthe true subspace structures; for the data contaminated by outliers, we provethat under certain conditions LRR can exactly recover the row space of theoriginal data and detect the outlier as well; for the data corrupted byarbitrary errors, LRR can also approximately recover the row space withtheoretical guarantees. Since the subspace membership is provably determined bythe row space, these further imply that LRR can perform robust subspacesegmentation and error correction, in an efficient way.
机译:在这项工作中,我们解决了子空间恢复问题。给定一组大约由多个子空间的并集得出的数据样本(向量),我们的目标是将样本划分为各自的子空间,并纠正可能的错误。为此,我们提出了一种称为低秩表示(LRR)的新颖方法,该方法在所有候选列表中寻找能够将数据样本表示为给定词典中碱基的线性组合的最低秩表示。结果表明,LRR很好地解决了子空间恢复问题:当数据干净时,我们证明LRR准确地捕获了真实的子空间结构。对于离群值污染的数据,我们证明了在一定条件下,LRR可以准确地恢复原始数据的行空间并检测离群值。对于被任意错误破坏的数据,LRR还可以在理论上保证近似恢复行空间。由于子空间成员资格可证明地由行空间确定,因此这些进一步暗示LRR可以有效方式执行健壮的子空间细分和纠错。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号